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& Deposition of solid waste; liquid effluents; atmospheric pollutants

& Competition between landuses: urbanization; industry; tourism;
agriculture; etc
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SOIL —

Soll Chemistry and Risk
Assessment
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Schematic of how different lead species, particle sizes,
and morphologies affect lead bicavailability.

Fig. 7.7 Schematic diagram of how different lead species, particle size and morphologies affect
lead bioavailability (after Ruby et al. 1996)
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Inert :
or Reactive Pool

non-reactive pool

available Pool

» Crystal matrix (clays/minerals)
e Chemically not reactive
» Biologically not available

Rodrigues et al., 2010; 2013



Ageing: slow transfer of metals from reactive to

non-reactive pool
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Use of chemical extraction tests as proxies for geochemical reactivity
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Rodrigues et al., 2010; 2013



e From Partition Models to Mechanistic
Modelling
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Rodrigues et al., 2010; 2013



In relation to plant uptake and leaching (I) vs. the oral bioaccessibility (I1)
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The concept of reactivity in risk assessment: metal S

Risk Assessment based on “Reactivity” rather than
total metal level yields reliable results (looking at risk)

Reduce analytical costs arising from risk assessment
and Increase analytical accuracy using fast and
reproducible soil tests (e.g. 0.43 M HNO3)



SOIL —

What about metallic
nanoparticles?




»Most of the surface area and electrostatic charge  in soils resides in the
<1 ym size fraction (Borkovec et al., 1993)

~»Colloidal fraction controls almost all surface-controlled processes,
Including adsorption reactions and precipitation/dissol ution - colloidal
clays, Fe and Mn hydrous oxides, and dissolved organic matter (fulvic and
humic acids), exudates from microorganisms (polysaccharides and some
proteins)

(Goldberg et al., 2000)
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in

Soil
» Dissolution/
Deposition/ Stabilization
Attachment/ suspension/
Straining Transport
Solid matrix Pore water

2.
Heteroaggregation
with natural
inorganic colloids
(phyllosilicates, iron
oxides)

complexed
metal ions

Dissolution: e.g. Dissolution of
MeNPs involves the oxidation of
surface elemental Me to Me™ and

subsequent desorptive dissolution.

Soluble ionic metal fraction is the most
toxic to aquatic and terrestrial biota

Aggregation: controlled by surface
charge, particle size, ionic strength, pH
and cation composition of the soil

5. Interaction with D

OM and natural coating

Isolution as well as NPs shape

®
o %as
DOM sorption
k < on ENPs

Main factors: pH, ionic
strength, DOM

Main factors: SOM, clay, metal
oxides, redox potential

Rodrigues et al., TrAC, 2016

¢ .‘_,Stabilization aigainst aggregation by
natural coating {eg. by phosphate)

abilization against

aggregation by DOM
cpating

Heteroaggregation with soil colloids
and natural NPs: colloidal clays, Fe
and Mn hydrous oxides, and dissolved
organic matter (fulvic and humic
acids), exudates from microorganisms



Example 1: Presence of AuUNPs in pore water

4 AuNPs

1) AuNPs observed by UV-Vis in soil
5 010 pore water samples collected until 7
EDDE days after amendment
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Tavares et al., Chemosphere, 2015



Example 2: Colloid-mediated detachment of CeO2 nano

particles in soil
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1) No dissolved Ce detected in soils spiked with CeO2 NPs
2) Low CeOz NPs retention in soil (nonequilibrium retention K=9.6 L kg™)

3) Low retention explained by: surface adsorption of phosphate to NPs causing
negative zeta potential and heteraggregation with natural inorganic colloids (clays)

Cornelis et al., ES&T, 2011



Fate of metallic nanoparticles in soill

Example 3: Stability of AgNPs in pore water

Scanning electron microscopy image of citrate-stabilized Ag NP following equilibration in
(A) Millipore water and (B) soil solution.

1) Attributed to sorption of short-chained Dissolved Organic Matter (DOM)

Klitzke et al., STOTEN, 2015



Example 4: Reactions of Ag in pore water

Fig. 5. Summary schematic of the possible transformations of labile Ag to non-labile
Ag fractions in soils according to speciation data collected by XANES. The dotted
oval represents all labile forms of Ag: Ag ', reversibly sorbed Ag ' 1o Fe-oxohydroxides
and organic 5 of crganic matter, Ag weakly complexed with other soil solution ligands
L) Mon-lahile Ag is solids: metallic Ag, AgCl and Ag.5 and Ag irreversibly bound to
orgamic 5 and Fe-oxohvdroxides (surface precipitated or fixed within crystal lattices),

Settimio et al., Environ. Pollut., 2014



Example 5: Bioavailability of AgNPs and Ag2S NPs to lettuce

Plant uptake of Ag from
AgNP and Ag.S-NP dosed
soil is dependent on NP
dissolution.

Ammonium thiosulfate
(fertiliser) increases
bioavailability of Ag from
AgNPs and Ag.S-NPs.

Soil application of phosphate
and H:O: decreases Ag
shoot concentrations.

Doolette et al., J. Hazard Mat., 2015



Example 6: Fate of ZnO Nanoparticles in soils and Cowpea

Seed

Zn-His
Zn-Cys
Zn-phosphate

Leaf
Zn-citrate
Zn-His
Zn-phytate

MNano-specific effects ?

Stem
Zn-citrate

Rapid
dissolution

Added ZnO-NPs underwent rapid dissolution following their entry into the soil
No significant difference in plant growth and accumulation or speciation of Zn in plant tissues
between soluble Zn and ZnO-NP treatments

No nanospecific effects observed in this study
Wang et al., ES&T, 2013



Environmental fate models for ENM need to incorporate the different reactivities of the
different forms of a specific ENM

Similar for metals where it is necessary to understand speciation in order to predict the
different reactivities of different forms

Metals ENM
an(singIe) \ ( noz(anatase)\
NP(agglomerated) TiO,(rutile)
NP(matrix-bound) TiO,(doped)
NP-colloid TiO, (Al-layer)
ey TiO,(Si-layer)
Dissolved Farice \ )
v Surche / \ Mineral form
species NP(bare)
NP(coated)
NP(functionalized)
NP-DOM
Solid phases Oxidation \ /
states Surface speciation

Westerhoff and Nowack, Acc Chem Res, 2013



Non-Equilibrium
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Fate of metallic nanoparticles in soill

- Effects of coatings and artificial coating degrada tion

- Nanospecific properties (e.g. changes in surface structure leading
to additional adsorption sites)  will affect:

e interaction of MeNPs with soil colloidal and solid constituents

 the ratio of free versus MeNPs-bound

...which will determine dissolution rate,
distribution between soil and pore water and
availability of MeNPs in soll



- FateofNPsinsol:howtomodeli?
* From Partition Models to Mechanistic Modelling

Partition model Multisurface model

pore

water

soil . Clay org mat. oxides

solid |

matrix

| . o Kinetic modelling .. DLVO theory

Account for dissolution and partitioning (Kq) underpredicted transport of
And for detachment of NPs from soils: e.qg. MeNPs by failing to account
nonequilibrium retention coefficient (Kr) by for the “lubricant” effect of

Cornelis et al. ES&T, 2011 surfactants or DOM



Additional metrics (e.q. number
concentrations) related to MeNPs specific

properties and transformations may be
needed :

for improved understanding of the fate and effects
associated with MeNPs in soil which are constantly

changing size, composition, and distribution as they age
In solls.



Test schemes for measuring NPs bioavailability

* Dissolution kinetics
e Transformation/ metal speciation in soil

« Surface affinity/ Aggregation/ Detachment/ Mobility/
Transport

» Uptake/ Bioaccessibility/ Bioaccumulation rate

o Effects/ Toxicity



Solute approach Nano approach

# |

(RQEAITIT), {Kihetc)
Sorption Degradation Leaching Characterization
OECD 105 CECD 307 QECD 312 size distribution, zeta potential,

Fate
Attachmnent efficiency
Transformation/durabiiity of camer

« OECD (other examples OECD TG 222, 225, 308 315, 317): Revise
guidelines available for applicability/ Revise and develo p guidelines

e Harmonize testing conditions, media, parameters, methods

« Measuring bioavailability through the assessment of the
geochemical available fraction: developing proxies, e.g. chemical
extraction methods



Fate of MeNPs in solil in risk assessment

* Analysis and characterization of MeNPs In
complex matrices (including soil and pore
water)

» Sensitivity of methods required to measure
very low concentrations of Me(NPs)



Fate of MeNPs in solil in risk assessment

complex, careful digestion
procedure?

. . natural background concentration
for some elements Is high, so work with high
concentration of MeNP Is necessary (or the use radio or
stable isotopic labelled MeNP)

* For some MeNP (e.g. Au), detection via SEM or ESEM
IS possible, EDX, EELS, also size distribution, number
concentrations; time consuming!



Fate of MeNPs in solil in risk assessment

« Separation techniques: separation of pore water, more techniques
available for pore water analysis, recovery for some elements low.

« FFF laborious, but advantages (e.g. low size Ilimit, data
treatment...).

» Single particle-ICP-MS: slightly higher size limit than FFF and
TEM; method requires development, but very low number
concentrations are possible and fast method.

e Combination of FFF and sp-ICP-MS possible.



Fate of MeNPs in solil in risk assessment

Examples: Although generalization is not possible, for most NPs:

pH: affects dissolution, stability of NPs in suspension; influences
aggregation through changes in surface charge and speciation

lonic strength: favours deposition, aggregation and pore straining, reducing
mobility and bioavailability, although adsorption of soil anions may stabilise
positively charged NPs

DOM: stabilization in suspension, reduce aggregation and deposition
afecting mobility and bioavailability

Soil texture (clay): increase pore straining, deposition and/or
heteroaggregation with soil colloids affecting mobility and bioavailability
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listening!!!!
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