Bioassays and tools for soil quality assessment

Mónica Amorim, researcher

Soil quality assessment

- 1. **Standardised test methods** for the assessment of contaminated soils a compilation
- 2. Advanced methods (examples)
- 3. Sub-organism tools
- 4. Overview and strategies

Name: Terrestrial plant test

Guideline: OECD 208 A,B (2006)

Species: Brassica rapa, Avena sativa or 27 other mono- and

dicotyledone crop species

Substrate: Field soils (e.g. LUFA), artificial soil

Duration: Approximately four weeks

Parameter: Seedling emergence and growth, biomass

Design: ECx (about 24 vessels), limit test

Effects of zinc-contaminated soil on *B. rapa*

Growth of A. sativa (control)

Name: Chronic toxicity in higher plants

Guideline: ISO 22030 (2005);

comparable to ASTM (1991)

Species: B. rapa (rapid cycling), Avena sativa

Substrate: Field soils, artificial soil

Duration: 5 - 8 weeks (depending on species)

Parameter: Biomass, number of flowers and/or seed pods

Design: NOEC, ECx (24 – 30 vessels)

Development of B. rapa: Day 5 and Day 35

Name: Earthworm acute test

Guideline: ISO 11268-1 (1993), OECD 207 (1984)

Species: Eisenia fetida, E. andrei

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: 14 days

Parameter: Mortality, biomass

Design: NOEC (24 vessels), limit test

Experience: Various differently contaminated soils (plus a ring-test)

E. fetida in artificial and field soil

Name: Earthworm reproduction test

Guideline: ISO 11268-2 (1998), OECD 222 (draft)

Species: Eisenia fetida, E. andrei

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: 56 days

Parameter: Biomass, number of juveniles

Design: NOEC (24 vessels), limit test

Experience: Various differently contaminated

soils (plus a ring-test)

Counting of juveniles in a water-bath

Name: Earthworm avoidance test

Guideline: ISO 17512-1 (2008)

Species: Eisenia fetida, E. andrei

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: 2 days

Parameter: Behaviour

Design: NOEC, ECx (number of vessels depending on the design

(dual or six sections)

Experience: Tests with various different soils and contaminations

Avoidance test: Dual and six section design

Name: Earthworm field test

Guideline: ISO 11268-3 (1999), BBA (1994)

Species: Natural community; in particular Aporrectodea

caliginosa, Lumbricus terrestris (temperate regions)

Substrate: Field sites

Duration: Up to 12 months

Parameter: Abundance, biomass, species composition

Design: Limit test (12 plots)

Experience: Very few in Europe

Epigeic, endogeic and anecic earthworms

Name: Enchytraeid reproduction test

Guideline: ISO 16387 (2002), OECD 220 (2004)

Species: E. albidus, E. crypticus, Enchytraeus sp.

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: Up to six weeks

Parameter: Mortality, number of juveniles

Design: NOEC, ECx (28 – 30 vessels)

Experience: Wide range of differently contaminated soils (two ring-tests)

Biology of Enchytraeids:

- Small (1 40 mm length)
 mainly whitish worms
- Important for OM breakdown
- About 300 species in Europe
- World-wide distribution
- In soil: 20.000 60.000
 ind/m² (annual mean)

Name: Collembolan reproduction test

Guideline: ISO 11267 (1999)
Species: Folsomia candida

Substrate: Artificial soil or field soils, e.g. LUFA

Duration: 28 days

Parameter: Mortality, number of juveniles

Design: NOEC, ECx (30 vessels)

Experience: Wide range of differently contaminated soils (plus a ring-test)

Reference substance: Effects on reproduction

Name: Chronic toxicity to dung larvae

Guideline: OECD 122 (2010)

Species: Aphodius constans

Substrate: Artificial soil or field soil plus dung

Duration: Six weeks

Parameter: Mortality, biomass

Design: NOEC, ECx (24 – 30 vessels)

Experience: Developed for veterinary drugs; relevance for site

assessment not clear

Dung beetle in their natural habitat

1. Standardised test methods: PREDATOR

Name: Predatory mite reproduction test

Guideline: OECD 226 (2008)

Species: Hypoaspis aculeifer

Substrate: Field soil or artificial soil

Duration: Three weeks

Parameter: Mortality, reproduction

Design: NOEC (28 vessels)

H. aculeifer: Life stages Feeding behaviour

1. Standardised test methods: Bioaccumulation

Name: Oligochaete bioaccumulation test

Guideline: OECD 317 (2010)

Species: Eisenia fetida, E. andrei, Lumbricus rubellus, E. albidus

or E. luxuriosus

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: At least 28 - 42 days

Parameter: Bioaccumulation factor: BAF or BSAF (lipid-normalised)

Design: Uptake and elimination phase

Test Set-up

Test chamber

1. Test methods: Functional

Name: Bait-lamina test

Guideline: Proposal from literature (Törne 1990)

Principle: Feeding activity (no distinction between microbes and

invertebrates)

Substrate: Field sites / soils (world-wide)

Duration: Usually between 4 days and 4 weeks **Parameter:** Fed / non-fed holes visually assessed

Design: Treatment versus control

Experience: Limited experience (UK, Germany); can be included in

laboratory tests

1. Test methods: Functional

Block of bait-lamina in the field

Bait-lamina in an earthworm repro test

1. Test methods: Functional

Name: Breakdown of organic matter in Litter bag test

Guideline: OECD 56 (2006)

Principle: Organic matter breakdown

Substrate: Field sites / soils (world-wide)

Duration: Usually between 6 and 12 months

Parameter: Mass loss of (e.g.) wheat straw

Design: Treatment versus control

Litter bags and minicontainer in the litter layer

Wheat-filled buried bag

2. Advanced methods: Full life cycle

Name: Enchytraeid full life cycle test

Status: published: Bicho et al (2015) Ecotoxicology. 24, 5, 1053-1063

Species: *E. crypticus*

Substrate: Artificial Soil or field soils, e.g. LUFA

Duration: Up to 46 days

Parameter: hatching, growth, maturity, mortality, reproduction

Design: NOEC, ECx (28 – 30 vessels)

2. Advanced methods: Multispecies/ Mesocosms

SMS: Soil Multispecies test System

- Built soil mesocosms

MITES (PREDATOR)

ENCHYTRAEID (Decomposer)

Menezes-Oliveira V.B. et al (2014) Applied Soil Ecology. 75, 24–32

MICROORGANISMS (Decomposer)

2. Advanced methods: Multispecies/ Mesocosms

TME: Terrestrial Model Ecosystems

- Field collected soil core

Morgan and Knacker (1994). Ecotoxicology. 3(4):213-233

3. Sub-organism tools: biomarkers

• General definition:

A biological response to a chemical or chemicals that gives a measure of exposure and, sometimes, also of toxic effect (Peakall 1994)

Often used in a more specific way:

Tests systems focussing on sub-organismic level: Biochemical, molecular, physiological and genetic

• Examples:

- oxidative stress biomarkers (enzymatic)
- transcriptomics (and other -omics)
- epigenetic markers (transgenerational)

3. Sub-organism tools: biomarkers

- Oxidative stress markers
 - Optimized for several soil organisms
 - Enzymatic and non-enzymatic endpoints
- Transcriptomics
 - differential gene expression
 - assess thousands of genes simultaneously (high-throughput)
 - national microarrays facility at UAVR
 - developed at UAVR for e.g. Enchytraeus crypticus

4. Soil quality assessment: overview

	r con quai	•••	,	. .			•	•••	•	••	
				tail			int	Effect			
	ENDPOINT	n.º species	OECD / ISO	throughput/ detail	exposure time	sensitivity	skills/ equipment	Performance	Mechanistic	Functional	
sub-	Organism (sub-O):	NON	-PH	ENO'	ГҮРІ	CAL					
	Molecular:										
1	Genomic	2	1	5	5	5	1		M		P : Performance;
2	Transcriptomic	>5	1	5	5	5	2		M		,
	Proteomic	1	1	5	4	5	1		M		M: Mechanistic;
	Metabolomic	1	1	5	5	5	1		M		F : Functional
	Epigenetic	1	1	3	3	5	2		M	F	
	Biomarkers*	>5	1	4	4	4	2	P	M	F	
	Cellular/Tissue:										Colour aims to illustrate
	Cell uptake mech. [#]	>5	1	4	4	4	2		M	F	nagative (rad) to
	Cell viability	>5	1	4	5	4	2	P	M	F	negative (red) to
	Histology	>5	1	3	3	3	3		M	F	positive (green)
	Embryo development	1	1	3	5	4	3	P	M		
_	anism (O):		NOT						_	_	classification.
	Bioaccumulation/ kinetics	>5	4	4	2	4	4	P	M		
	Avoidance	3	5	2	5	2	4	P			
_	Survival	>5	5	1	4	1	4	<u>P</u>			Environmental Pollution xxx (2015) 16
	Growth	>5	5	3	3	2	4	P			Contents lists available at ScienceDirect
	Reproduction	>5	5	3	2	3	4	P	3.4		
	Full Life Cycle	≤2	4	4	1	4	4	P	IVI		Environmental Pollution
	Community:	1	1	0	1	2	4	D		10	ELSEVIER journal homepage: www.elsevier.com/locate/envpc
	Trophic Transfer	1	1	2	1	3	4	P	N #	F	Commenter
	Multigenerational	1	1	4	1	4	4	P D-	IVI	F	Commentary Effect assessment of engineered nanoparticles in solid
19 Multispecies/mesocosms Sub-Organism & Organism (Sub-O &			1	4	1	4	4	P		F	media — Current insight and the way forward
	System Toxicology	5		5	1.5	5	1.5	D_	\mathbf{M}_{-}	Ţŗ.	Mónica J.B. Amorim ^{a, *} , Carlos P. Roca ^c , Janeck J. Scott-Fordsmand ^b
20	System Turiculugy	3		3	1-3	3	1-3		IVI	т,	monted j.b. Amornii , carios i. Roca , janeck j. Scott-Torusinaliu

> aveiro : biologia

4. Soil quality assessment: strategy

Finally..

- inside to potential effects

- knowledge for grouping / ranking
- enable safer-by-design
- support a KBRA and ITS

Effects
LONG TERM ← SHORT TERM

For further details:

mjamorim@ua.pt

or

http://www.cesam.ua.pt/monicaamorim

HOME » Members » Integrated » Researchers

- ◆ Research Groups
 ↑ Members

- ↑ Integrated
 → Faculty
 → Researchers → Post-Docs
- → Editorial Activities
- **♦** Research Projects → Networks
- → Development & Innovation Services **♦** Scientific Events
- → Other Scient Fic Activities

Phone: +351 234 247 093 (ext. 25009) e-mail: mamprim@ua.pt Category: Researcher

Category: Neaker Chet
Department Biology
Research group: Stress Biology
Research group: Stress Biology
IST We bot Rowwledge^{BM} search factor: AL=(Amorim MIBor Amorim MI or Amorim MI D)
AND AD=(Averor or Clinibra); Researcher ID = G8590-2011; ORCID http://orcid.org/0000-0001-8137-329

Direct URL for this page: http://www.cesam.ua.pt/monicaamonim

