The role of life cycle assessment in the evaluation of soil-related activities and impacts

Paula Quinteiro, Ana Cláudia Dias, Luís Arroja

CESAM/DAO, p.sofia@ua.pt

What is life cycle assessment (LCA)?

LCA addresses the environmental aspects and potential environmental impacts (e.g. use of resources and the environmental consequences of releases) of a product through all stages of its life cycle

From: UNEP website

- LCA provides an instrument for supporting environmental decision making
- The International Organisation for Standardisation (ISO) has standardised this framework within the series ISO 14040 on LCA

What is life cycle assessment (LCA)?

Life cycle inventory (LCI)

LCI is defined as a phase LCA involving the compilation and quantification of inputs and outputs for a given product system throughout its life cycle

Life cycle impact assessment (LCIA)

An LCIA helps interpret emissions and resource consumption data that are associated with a product's life cycle in terms of human health, natural environment and resources

Life cycle impact assessment (LCIA)

An LCIA helps interpret emissions and resource consumption data that are associated with a product's life cycle in terms of human health, natural environment and resources

Soil-related activities and impacts

Soil-related impacts remain less studied in LCA

Assessment of soil-related activities

Example Production of 1 m³ of maritime pine in Portugal

3 scenarios, reflecting different management intensities and logging equipment

8

Modelling topsoil erosion potential impacts

Modelling SS inventory

- Topsoil erosion RUSLE
- SS transported through landscape to surface-water systems

From: Quinteiro et al. 2014

Impacts of SS on aquatic biota

\Rightarrow Characterisation factors (CF_i)

$$CF_i = (FF_i \times EF_i) \times V_i$$
 effect factor for freshwater section i
fate factor for freshwater section i

\Rightarrow Fate factors (FF_i)

Impacts of SS on aquatic biota

Effect factors (EF_i): The PDF of macroinvertebrates, and algae and macrophytes versus the natural logarithm of C_{ss}

Functional Unit

4 1 ha of E. globulus managed forest over one revolution (36 years)

System description

■ Four *E. globulus* stands located at the lower-middle watershed of *Tagus*

river

- a) Digital elevation model (SRTM-DEM)
- b) Drainage network map

- c) Parcel map
- d) Soil erodibility map
- e) Crop management map

Inventory

SS produced and delivered to *Tagus* river sections

Tagus	river section	Area (ha)	SS delivery to <i>Tagus</i> river (t.ha ⁻¹ .revolution ⁻¹)
Stand 1	Almoural	8.2	4.1
Stand 2	Almourol	29	329.0
Stand 3	Vila Velha de	83	147.6
Stand 4	Rodão	103	131.6

Sensitivity analysis

	C parameter		K parameter		R parameter		C parameter		K parameter		R parameter	
Stands	-10%	+10%	-10%	+10%	-10%	+10%	-10%	+10%	-10%	+10%	-10%	+10%
	SS potential impacts on macroinvertebrates (PDF.m³.yr.ha¹.revolution¹)						SS potential impacts on algae and macrophytes (PDF.m³.yr.ha¹.revolution¹)					
Stand 1	17.1 (+10%)	5.7 (0%)	13.8 (-11%)	16.7 (+8%)	14.0 (-10%)	17.1 (+10%)	5.7 (+10%)	5.2 (0%)	4.6 (-11%)	5.6 (+8%)	4.7 (-10%)	5.7 (+10%)
Stand 2	934.8 (-24%)	311.8 (+1%)	1107.5 (-10%)	1365.8 (+11%)	1111.9 (-10%)	1359.0 (+10%)	311.8 (-24%)	414.3 (+1%)	369.5 (-10%)	420.7 (+2%)	370.9 (-10%)	453.3 (+10%)
Stand 3	637.9 (-33%)	113.6 (-1%)	862.7 (-10%	1062.2 (+11%)	863.0 (-10%)	1054.7 (+10%)	113.6 (-33%)	169.6 (-1%)	153.6 (-10%)	189.1 (+11%)	153.7 (-10%)	187.8 (+10%)
Stand 4	431.8 (-49%)	76.9 (0%)	769.5 (-10%)	939.4 (+10%)	769.5 (-10%)	940.5 (+10%)	76.9 (-49%)	152.6 (0%)	137.0 (-10%)	167.3 (+10%)	137.0 (-10%)	167.5 (+10%)

Take home messages

Effects of SS on aquatic biota:

Method for addressing potential impacts of SS on the potential loss of aquatic organisms

SS impacts on aquatic organisms can vary substantially when using a local resolution scale

- The SS potential impacts should also be assessed for other forest types and cropping systems
- Evaluating the feasibility of applying the developed framework and characterisation method for assessing the potential impacts caused by post-fire soil erosion

The role of life cycle assessment in the evaluation of soil-related activities and impacts

Journal of Cleaner Production 37 (2012) 368-376

Contents lists available at SciVerse ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Environmental impacts of eucalypt and maritime pine wood production in Portugal

Ana Cláudia Dias*, Luís Arroja

Int J Life Cycle Assess (2014) 19:1200-1213 DOI 10.1007/s11367-014-0730-5

LAND USE IN LCA

A framework for modelling the transport and deposition of eroded particles towards water systems in a life cycle inventory

Paula Quinteiro · Ana Cláudia Dias · Bradley G. Ridoutt · Luís Arroja

Int J Life Cycle Assess DOI 10.1007/s11367-015-0916-5

LAND USE IN LCA

Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota

Paula Quinteiro 1 . Ana Cláudia Dias 1 · António Araújo 2 · João L. T. Pestana 3 · Bradley G. Ridoutt 4 · Luís Arroja 1

Paula Quinteiro, Ana Cláudia Dias, Luís Arroja

The role of life cycle assessment in the evaluation of soil-related activities and impacts

Paula Quinteiro, Ana Cláudia Dias, Luís Arroja

CESAM/DAO, p.sofia@ua.pt

