How can organic matter improve soilbased ecosystem services?

Frank Verheijen & Jacob Keizer

universidade de aveiro

tro de Estudos do Ambiente e do Mar

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR Portugal

The bottom line

There is a practical upper limit to SOC

SOM

What else can we do to slow down the flux of CO₂ back to the atmosphere?

SOC sequestration?

- 1. Disturb the soil less (minimum tillage)
- 2. Use more recalcitrant residue inputs: biochar
 - Historically done on small scale only
 - And with wood char mostly

Amazonian dark earth - terra preta

Left a nutrient-poor oxisol; right an oxisol transformed into fertile terra preta - photo courtesy of Bruno Glaser

European plaggic anthrosol

'Invention' of biochar

Johannes Lehmann's Nature paper (concept)

COMMENTARY

A handful of carbon

Locking carbon up in soil makes more sense than storing it in plants and trees that eventually decompose argues Johannes Lehmann. Can this idea work on a large scale?

COP21 4/1000 initiative. Now backed by UNFCCC

"A 0.4% annual growth of SOC stock (agricultural soils, grasslands, and forest soils) to improve agricultural production and to contribute to achieving the longterm objective of limiting the temperature increase to +1,5/2°C."

Start and finish of major EC JRC report published after period of hype

- Broadened biochar science (166 pages)
- First balanced publication
 - Positive effects
 - Negative effects
 - Unknowns!

ies

JRC

EUR 24099 EN - 201

POSITIVES		NEGATIVES			UNKNOWNS
Empirical evidence of charcoal in soils exist (long term)	s -	The use of biochar analogues for assessing effects of modern biochars is very limited			Empirical evidence is extremely scarce for many modern biochars in soils
The principle of improving soils has been tried successfully in the past	2	Soil loss by erosion. Top-dressing biochar to soil is likely to increase water erosion			C Negativity
Plant production has been found to increase significantly after biochar addition to soils		Soil compaction during application			Effects on N cycle
Liming effect		Risk of contamination			Biochar dose-effect
High sorption affinity for HOC may enhance the overall sorption capacity of soils towards these trace contaminants		Residue removal. Removal of crop residues for use as a feedstock for biochar production can forego active SOM			Environmental behaviour, mobility and fate
Microbial habitat and provision of refugia for microbes whereby they are protected from grazing		Health (e.g. dust exposure) and fire hazards associated to the production, transport, application and storage of biochar			Distribution and availability of contaminants (e.g. heavy metals, PAHs) within biochar
Increases in mycorrhizal abundance which is linked to observed increases in plant yield		Reduction in earthworm survival rates (limited number of cases). pH or salt levels			Effect on soil organic matter dynamics
Increases in earthworm abundance					Pore size and connectivity
					Soil water retention/availability
					Priming effect
Requires					Effects on soil meso-megafauna
reproducibility					Soil hydrophobicity
experiments					Upscaling (time & space)
(industry funding)			Needs innovative		Soil CEC
			experiments		Soil albedo
			(research funding)		Wind erosion

First biochar-crop yield meta-analysis

- Most cited article in Agriculture, Ecosystems & Environment since 2011!
- 291 citations (Scopus)

- 1. 10% increase globally
- 2. Large variation by biochars, soils, and plants
- 3. Indications of liming and fertilising mechanisms
- 4. Update on this MA is under review...

-60

-40

Change in crop productivity (%)

Biochar COST Action starts

- Leader of WG2: Land Use Management
- Two erosion STSMs between ESP and Volcani Centre (Israel)

calcareous loamy sand 1st rainstorm 60 _г 60 _T Α С **Biochar treatments** 50 1st rainstorm 50. -0.2540 40 **★**-0.5 30 30 20 20. 10-10Infiltration rate (mm h⁻¹) 20 30 50 70 10 40 60 80 Non-calcareous loamy sand 60 _T Cumulative rainfall (mm) В 2^{nd} rainstorm 50-Soil loss reduced by 1.3 times 40 30 20--<u>AA</u>-<u>A</u>A-<u>A</u>A-<u>A</u>-A 10-

No effect in calcareous loam

Soil loss reduced by 3.6 times!

Infiltration rate increased in non-

Biochar Investigation Network of Portugal (BINP) starts

Mission: to bring together people involved in biochar research and production in Portugal, to facilitate collaborations by providing a platform for networking, to disseminate national and international biochar news, funding opportunities, conferences and workshops.

First biochar-crop field study of Portugal (Vitichar) starts

In collaborations with EVB, DRAPC

Objeo

DRAPC Direcção Regional de Agricultura e Pescas do Centro

Objectives:

- 1. Can biochar affect grapes?
- 2. Are there any undesired side effects?

- No reduction in plant drought stress (deep roots!)
- No effect on grape yield
- No effect on grape quality
- No negative effects on soil invertabrates

Now iSCAPER project field site

*** * * * *

Future work:

Biochar to help reduce erosion of vineyard soil MASCC project: Mediterranean Agricultural Soils Conservation under global Change

First FCT biochar project starts: EXPLOCHAR

Exploring mechanisms of reducing drought and disease stress in eucalypt plants by applying biochar to soils

Welcome biochar experts!

An expert knowledge workshop...

- 40 experts (incl. Brazil, USA, Israel)
- Research priorities
- Will be published in SI in summer 2016

Major meeting in Aveiro of international biochar experts

Biochar in soils: on the path to the required level of scientific understanding (LOSU)....for sustainable policy development!

Book chapter in 'Biochar Bible' 2nd edition

Biochar Sustainability and Certification

"Sustainable production and sustainable application are two sides of the same coin. One cannot succeed without the other!"

Optimum dose-effect

What biochar application rate do we choose? Trade-offs!

First biochar forestry field site in Portugal

Collaboration led by Associação Florestal Baixa Vouga

To improve growth and survival of eucalypt plants

Take-home messages

- 1. Different biochar applications for different Ecosystem Services
- 2. Trade-offs need careful consideration
- 3. Biochar sustainability needs interdisciplinary research!
- 4. A lot more work is needed on the unknowns!

Some of our collaborators!

Thank you!

Any Questions?

