From hazard to risk assessment of contaminated soils: from single chemicals to chemical mixtures

Susana Loureiro
applEE- Applied Ecology and Ecotoxicology Research Group
sloureiro@ua.pt
FACTORS AFFECTING SOIL ECOSYSTEMS

- Changes in Land Use
- Invasive Species
- Climate Change
- Chemical Pollution

Soil

Human Pressure
“GREEN REVOLUTION”
How is evaluated soil quality and what are the constraints?

#1 Constraint...

No specific soil regulation or legislation (similar to the Water Law or the Water Framework Directive)

Ontario Ministry of the Environment de 2011

#2 Constraint...

Chemical hazard assessment one-by-one basis
Independently from climacteric conditions, soil type

#3 Constraint...

It’s Hard to Assess Hazard accurately!
Case Study #1: Repeated Application

Folsomia candida

AIM: Study on effects of molluscicide baits (metaldehyde)

APPLICATION: Surface; repeated accordingly to the manufacturer

Usual HAZARD ASSESSMENT: soil incorporation and single dose

New Approach: double application

APLICATION #1

<table>
<thead>
<tr>
<th>Metaldehyde (mg a.i..kg⁻¹)</th>
<th>Nr. Juveniles</th>
<th>Nr. Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.6</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>31.8</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>74.2</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>106</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

APLICATION #2

<table>
<thead>
<tr>
<th>Metaldehyde (mg a.i..kg⁻¹)</th>
<th>Nr. Juveniles</th>
<th>Nr. Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12.8</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>38.4</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>64</td>
<td>300</td>
<td>60</td>
</tr>
<tr>
<td>89.6</td>
<td>400</td>
<td>80</td>
</tr>
<tr>
<td>128</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>

Case Study #2: Pesticides and Climate

AIM: Study how temperature influences the effects of pesticides chlorpyrifos and mancozeb

Usual HAZARD ASSESSMENT: optimum laboratory conditions single chemical exposure

New Approach: Temperature fluctuation and Binary mixtures assessment
Case Study #3: Agro-ecology and Ecosystem Services

AIM: Study agroecosystem services, integrating parameters

Usual HAZARD ASSESSMENT: species toxicity

New Approaches: integrate parameters evaluating soil support, regulation, biodiversity and yield.

INDICATORS
- Soil OM
- Carbon
- Nitrogen
- Soil aggregation
- Photosynthetic capacity
- Radicular system
- Functional Biodiversity
- Microbial Biomass
- Bait-Lamina
- Field traps for invertebrates

SUPORT and REGULATION
- Fertility
- Soil Formation
- Biological Activity
- Disease and Pest control
- Primary Production
- Nitrogen Cycle

YIELD
- Yield
- Sustainability
- Profit

INTEGRATE SEVERAL SERVICES
Case Study #4: Improving Soil Quality

Fertilizers and biochar with or without pesticides

Usual HAZARD ASSESSMENT: No Assessment

New Approach: integrate exposure and assessment
How to deal and integrate chemical mixtures in Environmental Risk?

#1 Constraint...
No specific threshold concentrations for comparison with hazard outputs

Ontario Ministry of the Environment de 2011

#2 Constraint...
Risk Coefficient Calculation on a chemical one-by-one basis
Independently from climacteric conditions, soil type

#3 Constraint...
Risk is Underestimated! Not even additive!
PNEC- Predicted No Effect Concentration

- Based on *hazard assessment and standardized tests*
- Different traits/trophic level-position
- NOEC
- Application of safety factors

HC$_5$- Hazard Concentration 5% species

- Based on *hazard assessment and Species Sensitivity Distribution*
- Number of species (>8)
- NOEC, EC$_{10}$, EC$_{50}$ (lack of data)
- Application of safety factors

Constraints:
- long-term tests (compared with water)
- Lack function assessment
- Lack integration
- Lack applied strategy
- Lack of data (reliable data)
PREDICTED NO EFFECTS CONCENTRATION – PNEC (or HC₅)

![Mapping risk diagram]

NOEC, EC₁₀, EC₅₀

- **PREDICTED ENVIRONMENTAL CONCENTRATION**
- **MEASURED ENVIRONMENTAL CONCENTRATION**

\[
Risk = \frac{PEC_i}{PNEC_i}
\]
What is Cumulative Risk?

Cumulative risk is the combined risks from aggregate exposures to multiple agents or stressors, which may include chemicals, biological or physical agents.

Cumulative risk assessment (CRA) is an analysis, characterization, and possible quantification of the combined risks to human health or the environment from multiple agents or stressors.

What is Cumulative Risk?

Cumulative risk is the combined risks from aggregate exposures to multiple agents or stressors, which may include chemicals, biological or physical agents.

Cumulative risk assessment (CRA) is an analysis, characterization, and possible quantification of the combined risks to human health or the environment from multiple agents or stressors.

Response Addition Method

\[R_m = \sum_{i=1}^{n} r_i \]

Where:
- \(R_m \) = mixtures risk
- \(n \) = number of components
- \(r_i \) = component risks

Needs to be implemented!
Sustainable Agriculture

http://www.groundswellinternational.org/
Acknowledgements:
Rui Morgado
Miguel João Santos
Catarina Bastos
Marija Prodana
Diogo Cardoso
Amadeu Soares

sloureiro@ua.pt
http://susanaloureiro.weebly.com
http://www.cesam.ua.pt/susanaloureiro