

Wildfire effects on soils

Fire severity

Fire severity

Post-fire soil erosion window of disturbance

2. Post-fire soil erosion mitigation

2. Post-fire soil erosion mitigation

Straw Mulch ---- Mulch de Palha

Objectives:

- to quantify soil losses in **burnt** plots at long temporal and spatial scales;
- •to quantify soil losses in treated plots to test the effectiveness of:
 - 1. eucalypt chopped bark mulch;
 - 2. eucalypt logging slash mulch;
 - 3. dry polyacrylamide (PAM);
 - 4. hydromulch;
- •to identify **key factors** explaining post-fire runoff and erosion with and without treatments.

Material and Methods

Erosion plots

Methods

-rainfall (mm; mm h⁻¹)

- -runoff (tanks)
- -soil losses (105°C, 24 h)
- -OM % (550°C, 4 h)

- -soil resitance (torvane + penetrometer)
- -soil moisture sensors
- -soil water repellency (MED)

-plot soil cover (grids)

WEEKLY

Post-fire soil erosion mitigation treatments in Portugal

Forest residue Mulch Eucalypt chopped bark mulch

Forest residue Mulch ----- Restos florestais triturados

Eucalypt slash logging mulch ----- Restos florestais sem triturar

Results & Discussion

Soil erosion risk
Treatment effectiveness

Post-fire soil erosion worldwide

Low soil erosion in Mediterranean regions

Post-fire soil erosion in Portugal

Wildfire severity

Scale effect

Mulch effectiveness

Treatment effectiveness: overall

Conclusions

- 1. Post-fire soil losses are low, but still higher than soil formation rates estimates.
- 2. Some field indicators (20° slope, 10-5% ground cover, grey-red ashes) are useful for indentifying risky areas.
- 3. Chopped bark mulching is the most effective (similar to straw), reducing around 90% soil erosion (Gcover 70%);
- 4. Dry PAM did not reduce soil erosion;
- 5. Hydromulch was effective but expensive.

Ongoing research

1. Laboratory testing: Lowest-but-effective application rate. FCTU Coimbra

2. Field testing: Semide wildfire (2015)

no mulch high mulch

low mulch

3. PRODER funded measures: Shrub erosion barriers

We want to acknowledge:

FCT and co-financed by FEDER POCI2010 founded Projects:

RECOVER PTCD/AGR-AAM/73350/2006

EROSFIRE POCI/AGR/60354/2004

EROSFIRE-II PTDC/AGR-CFL/70968/2006

FIRECNUTS PTDC/AGRCFL/104559/2008

CASCADE (EU-FP7 – ENV.2011.2.1.4-2/283068)

RECARE (EU-FP7 ENV.2013.6.2-4 no. 603498)

Portuguese Government IFADAP/INGA-founded Project : R.A.A. "Recuperação Areas Ardidas" (no. 2004 09 002629 7).

FCT Fellowships: SPA SFRH/BD/33392/2008

Post-fire soil erosion mitigation research in Portugal

1. Fire severity & FR mulching

Shakesby et al. 1996 Prats et al. 2012 Hosseini et al. 2016

- 2. Micro-plot position & PAM vs. FR mulching Prats et al. 2014a
- 3. Upscaling & Hydromulching Prats et al. 2016a
- 4. Upscaling & FR mulching Prats et al. 2016b
 Prats et al. 2016c
- 5. Review

Ferreira et al. 2014 Prats et al. 2014b Prats et al. (submitted)

OM losses & gains

Table 4
Estimated soil organic matter (OM) content, OM losses in the eroded sediment, soil OM gains, and OM net change as a percentage of the original soil OM $(g m^{-2})$ for various studies. OM contents calculated from organic C contents (OCC) using the van Belemen factor (OM = OCC \times 1.724; Pribyl, 2010) for the OM pool in the upper 2 cm of the soil.

Fire severity	Study design		Soil properties (0-2 cm depth)				Soil loss by water erosion			Gains by mulch		Net change in soil OM	Reference
	Time period	Plot surface m ²	Bulk density g cm ⁻³	Stone content > 2 mm % vol	OM content		Reported soil loss	Sediment OM content	OM loss in sediment	Mulch OM content			
	Years				%	${\rm g}{\rm m}^{-2}$	g m ⁻²	%	g m ⁻²	%	${\rm g}{\rm m}^{-2}$	%	
Unburnt	2	16	0.9	55	20	1597	2	57	1			-0.1	Thomas et al. (1999)
Low	2	4238	0.8	16	9	1212	86	40	34			-2.8	Shakesby et al. (2013)
Low	1	16	1.2	65	9.9	827	38	52	20			-2.4	Prats et al. (2012)
Low	1	16	1.2	65	9.9	827	38	52	20	88	1540	183.8	Prats et al. (2012)-mulch
Moderate	2	0.28	0.8	57	11	757	930	56	521			-68.8	Malvar et al. (in press-b)
Moderate	2	2620	0.8	16	9	1212	155	40	61			-5.1	Shakesby et al. (2013)
Moderate	2	16	1	55	20	1720	610	34	207			-12	Thomas et al. (1999)
Moderate	2	192	1.1	55	19	1839	131	41	58			-3.2	Faria et al. (2015)
Moderate	0.5	100	1.1	40	10	1980	410	40	164			-8.3	Gimeno-García et al. (2000)
Moderate	1	16	1.0	51	12.2	1224	562	45	258			-21.1	Prats et al. (2012)
Moderate	1	16	1.0	51	12.2	1224	562	45	258	88	766	41.5	Prats et al. (2012)-mulch
Moderate-high	2	100	1.1	55	10	990	616	37	224			-22.6	This study SF-untreated
Moderate-high	2	100	1.1	55	10	990	55	33	8	88	1197	123.9	This study SF-mulch

Please cite this article as: Prats, S.A., et al., Mid-term and scaling effects of forest residue mulching on post-fire runoff and scil erosion, Sci Total Environ (2015), http://dx.doi.org/10.1016/j.scitotenv.2016.04.064

-60% +120%